
Technical Report
CMU/SEI-95-TR-002
ESC-TR-95-002

3: negie-Mellon University

. vtv/a/e Engineering institute

"igW

A

■M

Object-Oriented Software Measures
Clark Archer

Michael Stinson

April 1995

'M>:

A

t=coi n am? rv

JUN 1 2 1995

#MB>

#' x-

-SÄ

f""Th
I for

This document bos/iSeeti approved
for public, release' and sale; its \
distribution is unlimited, x

 „ , Ulrf — ——9 7v ' ■Xi

X

BflC^ÜÄLITY INSPECTED ^

-/

19950608 071

Technical Report
CMU/SEI-95-TR-002

ESC-TR-95-002
April 1995

Object-Oriented Software Measures

Accesion For

NTIS CRA&I
DTIC TAB
UnariC'O'j.'ioed
Justificatio:

By
Distribution)

Dist

M

AvailoD'l. ■ L.c.-tÄ

Avail ana / o
Specie

Clark Archer
Winthrop University

Michael Stinson
Central Michigan University

Approved for public release.
Distribution unlimited.

DTIC QUALITY G?8?10'fED 3

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1995 by Carnegie Mellon University

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a Federally Funded Research
and Development Center. The Government of the United States has a royalty-free government purpose license
to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause
at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994.

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone:(703)274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1. Introduction 1
1.1. Reasonable Characteristics of a Measure 1
1.2. Overview of Software Metrics 2
1.3. Software Measure 3

1.3.1. Weyuker's Measure Properties 3
1.3.2. Comments on Weyuker's Properties 4

1.4. Emergence of a New Paradigm 6

2. Overview of the Object-Oriented Approach 7
2.1. Origins of the Paradigm 7
2.2. Elements of the Object-Oriented Approach 7

3. Terminology 9
3.1. Terms Specific to Object-Oriented Analysis and Design 9
3.2. Comments on Terminology 10

4. The Nature of Object-Oriented Software 11
4.1. Different Features of Object-Oriented Products 11
4.2. Shared Features of Object-Oriented Products 12

5. A Taxonomy for Object-Oriented Software Measures 13
5.1. Examples of Measures and Their Corresponding Taxon 14
5.2. Explanation of Table Acronyms 15

6. Annotated Bibliography 17
6.1. Articles Related to Object-Oriented Measures 17
6.2. Early Seminal (Much Quoted) Works of Significance to the Discipline 28
6.3. Textbooks on Software Measures 28
6.4. Textbooks on the Object-Oriented Approach 29
6.5. Significant Articles on the Object-Oriented Approach 31
6.6. Texts on Mathematics and Statistics Relating to Measures 32

7. Examples of Computation of Measures 33
7.1. Representative Measures for Each Taxon 33
7.2. C++ Example (Computer Performance) 34

7.2.1 Computation of Measures for C++ Example 39
7.3. Ada95 Example (Car Dashboard Instrumentation) 42

7.3.1 Computation of Measures for Ada95 Example 46

8. Conclusions and Recommendations 49

Acknowledgments 51

References 53

CMU/SEI-95-TR-002

ii CMU/SEI-95-TR-002

List of Tables

Table 5-1: Measures and Their Corresponding Taxon 14

Table 7-1: Representative Measures 33

CMU/SEI-95-TR-002 in

iv CMU/SEI-95-TR-002

List of Figures

Figure 7-1: Class Hierarchy Chart 34

Figure 7-2: C++ Example Class Diagram 39

Figure 7-3: Ada Example Class Hierarchy Chart 42

Figure 7-4: Ada95 Example Class Diagram 46

CMU/SEI-95-TR-002

vi CMU/SEI-95-TR-002

Object-Oriented Software Measures

Abstract: This paper provides an overview of the merging of a paradigm and
a process, the object-oriented paradigm and the software product
measurement process. A taxonomy of object-oriented software measures is
created, and existing object-oriented software measures are enumerated,
evaluated, and placed in taxa. This report includes an extensive bibliography
of the current object-oriented measures that apply to the design and
implementation phases of a software project. Examples of computation of
representative measures are included.

1. Introduction

It is quite clear that measurement is necessary for the software development process to
be successful. In addition, the path to controlling and improving the software design
process may lie in the use of an object-oriented design approach. The recent movement
toward object-oriented technology must also include the processes that control object-
oriented development, namely software measures. Tom DeMarco summarizes the
essence of these sentiments by stating, "You cannot control what you cannot measure"
[DeMarco 87]. Measurement encompasses many aspects of the software life cycle. The
emphasis of this document is on the design and implementation phases of an object-
oriented approach. This report investigates the software product measures that exist in
these phases and develops a taxonomy for these measures.

1.1. Reasonable Characteristics of a Measure

A measure is a numerical value computed from a collection of data. Before examining
the details of software measures (often called metrics), let's consider which properties of
a measure, in general, that are reasonable. A measure should have the following
characteristics to be of value to us:

•The measure should be robust. The calculation of the measure is
repeatable and the result is insensitive to minor changes in environment, tool,
or observer. The measure is precise, and the process of collecting the data for
the measure is objective.

CMU/SEI-95-TR-002

•The measure should suggest a norm, scale, and bounds. There is a scale
upon which we can make a comparison of two measures of the same type, and
so conclude which of the two measures is more desirable. For example, there
is a realistic lower bound, such as zero for number of errors.

•The measure should be meaningful. The measure relates to the product,
and there should be a rationale for collecting data for the measure.

Often, one measure alone is insufficient to measure the features of the design paradigm
or to accomplish the objectives of the software project. This suggests that a collection or
suite of measures is needed to provide the range and diversity necessary to achieve the
software project's objectives. A suite of measures adds an additional consideration.

•A suite of measures should be consistent. If a smaller value is better for
one type of measure in the suite, then smaller is better for all other types of
measures in the suite.

In addition, the data gathering process that produced the data from which a measure is
computed should be carefully orchestrated. Data gathering without a reason is not
likely to produce meaningful results. Although data acquisition is not the topic of this
report, data gathering issues should not be ignored. Fenton [Fenton 91] covers this
topic quite well.

1.2. Overview of Software Metrics

Many people are reluctant to use the term metric in reference to software. The
American Heritage Dictionary (Mifflin, 1991) defines a metric as:

1. designating, pertaining to the metric system, or

2. a standard of measurement.

Mathematicians define a metric more rigorously; they use the term to apply to a real-
valued set function that measures the distance (as defined by the metric) between two
objects in the set. In his text on topology, Mansfield [Mansfield 63] defines a metric as
follows:

Let A be a set of objects, let R be the set of real numbers, and let p be a one-
to-one function such that p:A®A-> R, where ® denotes the Cartesian product
of A with A. Then, p is a metric for A if and only if

• p(oc,ß) > 0 Va,ß e A,

• p(cc,ß) = 0 <^ cc=ß ,

• p(a,ß) = p(ß,oc) V cc,ß e A, and

• p(cc,y) < p(cc,ß) + p(ß,y) Va,ß,ye A.

CMU/SEI-95-TR-002

For the purposes of this document, the term software metrics will mean measurements
made on a software artifact. There are two important components of the software
artifact that are measured for our purposes: the artifact's design specification document
and its coded implementation. The early computed metrics of Halstead, McCabe, and
Albrecht, introduced in the late 1970s, were usually based on only the coded end-
product. These are the software science metrics [Halstead 77], cyclomatic complexity
metric [McCabe 76], and function point analysis [Albrecht 79] that prevailed in the early
1980s as software product measures. These earlier approaches to measuring software
artifacts were based on the software specification methods of the time and the
programming languages that supported these methods. The paradigm that dominated
software development in the late 1970s and early 1980s was a top-down structured
development.

The need to obtain measures of the intended software product early in the life cycle
grew along with the need to estimate the cost of the product. Since software production
is a labor-intensive process, and labor is based on time spent, the cost of the software
product is directly related to certain of its features such as the size of the product, the
complexity of the product, and expected reliability of the product. Any metric that could
be computed at the design stage and could measure any of these features is useful for
predicting the product's cost.

1.3. Software Measure

The concept of a metric measuring of the distance between two objects in a set A has
very little meaning in the world of software. Why would we want to measure the
distance between two software products or two software specifications? It does,
however, make sense to measure software product X and software product Y, and then,
to compare the two measures. We also note that there is no standard of measurement
for software artifacts that is universally accepted. Based on both the dictionary and
mathematical definitions of metric, we see that the term software metric is not
appropriate. The preferred term is software measure.

1.3.1. Weyuker's Measure Properties

Many issues arise as to what constitutes, and what are the acceptable properties of, a
software measure. Elaine Weyuker has brought together nine properties that a
software product measure should have [Weyuker 88]. Many authors have used these
properties as a standard against which to evaluate their own measures.

"All the measures considered depend only on the syntactic features of the
program" [Weyuker 88].

Let P, Q, and R be programs.

PsQ means that P and Q halt on the same input.

CMU/SEI-95-TR-002 I"

P;Q means that P is augmented by Q. (An appending of Q to P)

The measure of P is denoted by | P |.

Nine properties of measures:

1. (3 P) (3 Q) (| P | * | Q |).

2. Let c be a nonnegative number. Then there are only finitely many programs
of measure c.

3. There are distinct programs P and Q such that | P | = | Q |.

4. (3P)(3Q) (P = Q and | P | * | Q |).

5. (VP)(VQ) (|P| <|P;Q |)and (|Q| < | P; Q |).

6. (3 P) (3 Q) (3 R) (| P | =|Q|)&(|P;R|* | Q ; R |) and

(3 P) (3 Q) (3 R) (| P | = | Q |) & (| R ; P | * | R ; Q |).

7. There are program bodies P and Q such that Q is formed by permuting the
order of the statements of P; and | P | * | Q |.

8. If Pis a renaming of Q, then | P | = | Q |.

9. (3 P) (3 Q) (| P | + | Q | < | P ; Q |).

1.3.2. Comments on Weyuker's Properties

Property number one [(3 P) (3 Q) (| P | * | Q |)] reflects the idea that a measure
that assigns all programs the same value is not a measure. Property number two (for a
nonnegative number c there are only finitely many programs of measure c) is the non-
coarseness property: it places a constraint on property one by stating that only a finite
number of programs can be assigned the same measure. Property number three (there
are distinct programs P and Q such that | P | = | Q |) is often called the non-
uniqueness property: two different products can have the same measure value.
Property number four [(3 P) (3 Q) (P = Q and | P | * | Q |)] states that two software
products can possess the same functionality but not have equal measure values.
Property number five [(V P) (V Q) (|P| < | P; Q |) and (| Q| < | P; Q |)] is a
monotonicity requirement: a combination (concatenation) of two products can never
have a measure value less than either of the products taken individually. Property
number six [(3 P) (3 Q) (3 R) (| P | =|Q|)&(|P;R|* | Q ; R |) and (3 P) (3 Q)
(3R)(|P| =|Q|)&(|R;P|* | R ; Q |)] states that there exist products whose
measure values are the same, but the augmentation of either product by a third product
can produce measure values that are not the same. Property number seven [there are
program bodies P and Q such that Q is formed by permuting the order of the statements
of P; and | P | * | Q |] states that there are software products whose measure value
can be affected by a permutation in the order of program statements. Property number
eight (if P is a renaming of Q, then | P | - | Q |) is the "carbon copy" property

CMU/SEI-95-TR-002

indicating that the measure value is not affected by any isomorphic transformation of
the original product. Property number nine [(3P) (3Q) (|P| + |Q| < | P ; Q |)] is
the most controversial of the nine properties. This property states that augmentation
increases the measure value for some software products.

Weyuker's properties are concerned with computer programs. What features of
computer programs do these properties encompass? The answer to this question is
unclear. Consider property number five which states "for all programs P and Q the
measure of program P augmented by program Q is greater than or equal to both
programs P and Q alone." This property is reasonable if the feature of concern is
program size and the measure is the number of lines of executable source code.
However, for the same feature program size and the same measure number of lines of
executable source code, property number five is in conflict with property number six.
Property six states, "there exist programs P, Q, and R such that programs P and Q can
have the same measure and the measure of P augmented by R is different from Q
augmented by R." This property is not true for lines of code that are used as the
measure and, in fact, is not true for most size measures, suggesting that Weyuker's
properties encompass some feature other than program size.

Since the title of Weyuker's article is "Evaluating Software Complexity Measures," the
properties must also involve complexity. McCabe [McCabe 76] introduced a measure
called the cyclomatic complexity metric v = n + 1, where % is the number of predicates in
a program. A predicate in a program is a Boolean expression having one of the forms:

B1 = B2, B1*B2, B1<B2, Bl > B2, B1<B2, or B1>B2,

where Bl is an identifier and B2 is either a constant or an identifier. To use the
predicate count approach to compute McCabe's metric, all statements involving
compound Boolean expressions are reduced to a sequence of statements with only
predicates in them. Careful calculation indicates that Weyuker's property five is
satisfied and property six is not satisfied. Thus, Weyuker's properties do not encompass
McCabe's view of complexity.

Halstead, however, introduced a measure that does satisfy property six. The measure
(called an effort measure) measures the effort involved in producing an algorithm
[Halstead 77], but the measure is difficult to compute; it involves the counts of the total
occurrence of operators and operands and the counts of unique operators used and
unique operands. Halstead's effort measure is implementation-dependent.
Furthermore, Weyuker proves algebraically that the Halstead effort measure does not
satisfy her property number five, but does satisfy her property number six.

Which features, then, of software products are encompassed by Weyuker's properties?
Fenton resolves this issue by stating, "Properties five and six are relevant for very
different (and incompatible) views of complexity. Hence it is impossible to define a set of
axioms for a completely general view of 'complexity1" [Fenton 91]. This suggests that
software products have features that can be identified and grouped into categories that
include features, measures, and axioms for these measures.

CMU/SEI-95-TR-002

Weyuker's set of properties is a seminal effort in establishing a basis for evaluating
software measures. Some of the properties should apply to all software measures; some
apply to a chosen few features that we may wish to measure. Property number two, for
example, is a property that all measures should satisfy. Simply stated, this property
requires that a measure not be "too coarse." Yet, property number two is not satisfied
by McCabe's cyclomatic complexity measure, in which too many programs would be
assigned the same measure. We provide an example of this in the computation of the
example measures in sections 7.2.1 and 7.3.1 of this report.

That software products have features that have conflicting properties is evidenced by
established and accepted measures that do not satisfy some set of Weyuker's properties.
Once a design and implementation paradigm is chosen, the features of concern of the
software products to be produced should be isolated and grouped into categories.
Measures can be selected for each category, and lists of properties can be developed for
these measures. Weyuker's properties can be used as a basis for selecting these
properties. This also suggests that a collection of measures may be appropriate for the
application as opposed to a single measure.

1.4. Emergence of a New Paradigm

A new paradigm became popular in the mid 1980s that began to affect the way software
developers viewed software analysis and design. This paradigm, the object-oriented
paradigm, added a new level of complexity to the study of software measures. Are
software products produced under object-oriented techniques measurable by existing
software measures, or does a new body of measures need to be invented? What is the
current state of the discipline relative to object-oriented measures?

CMU/SEI-95-TR-002

2. Overview of the Object-Oriented Approach

One of the problems of any software project is simply to be able to manage the concepts,
flow of control, and data. Many software engineers feel that part of the solution to this
problem lies in the use of an object-oriented approach [Booch 94], which groups both
data and procedures (called methods) into an entity called an object. These objects allow
a programmer, designer, and analyst to examine larger cognitive blocks of a project, and
thus clarify the programming process. While these chunks may clarify the process of
software design, they raise some questions as to the origin of the objects, the structures
under which they reside, and whether and how we can examine objects for complexity.

2.1. Origins of the Paradigm

Ole-Johan Dahl and Kristen Nygaard of Norway created the seminal work on an object-
oriented language with their introduction of Simula67 in 1967. As the name implies,
Simula67 was generally used for simulation modeling and proved to be a significant
influence on later object-oriented languages. Smalltalk, developed at XEROX in Palo
Alto in the 1970s, was the next major development of an object-oriented language.
Smalltalk was followed by a number of languages that either were object-oriented from
inception, such as Eiffel, or revamped a previous language to include object-oriented
capabilities, such as C++, Object Pascal, and Ada95.

2.2. Elements of the Object-Oriented Approach

The basic element in an object-oriented system is an object. An object is an
encapsulation of both data and functionality with the added support of message passing
and inheritance. We refer to the data in an object as the attributes of the object, while
the functionality is provided by the methods. These two entities—attributes and
functionality—form a single logical entity, an object. This contrasts with the more
traditional structured programming, which considers data separately from the
procedures that act on them. Such a logical grouping of data, along with the procedures
that will affect them, gives a conceptual as well as a physical basis for an object. For
example, the same logical grouping mimics some nice properties that humans take for
granted in the way we conceptualize everyday objects. The old joke about whether the
price of the car includes a steering wheel indicates to us that we have predetermined
that the object has the functionality of steering embedded in the concept of the car
(object).

CMU/SEI-95-TR-002

Objects themselves are usually created through an instantiation process that uses a
general template called a class. The template contains the characteristics of the class,
without containing the specific data that needs to be inserted into the template to form
the object. This lack of specification is analogous to the well-known concept of
referencing a stack without specifying what is in the stack. That is, certain stack
features are well known and understood, although we do not yet know the type of
elements in the stack.

Classes are the basis for most design work in objects. Although the purpose may be to
instantiate objects, that particular task can be delayed as the higher level of abstraction
is created. Classes are either superclasses (root classes), created with a set of basic
attributes and methods, or subclasses, meaning they inherit the characteristics of the
parent's class and may add (or remove) functionality as desired.

A superclass may be created with general characteristics found in all classes of a
particular relationship. For example, a superclass car might contain the characteristics
found in most cars: steering, braking, and power for locomotion. Subclasses of the
superclass car would inherit all of these characteristics simply because they are a
descendant of the superclass. From the perspective of the class that inherits the
characteristics, the inheritance forms an IS_A relationship. This type of relationship
forms what we call a class hierarchy lattice.

Another type of relationship, interaction between classes, may take two different forms:
classes may share data through aggregate or component grouping, or classes may share
objects.

Aggregate classes interact through messages, which are directed requests for services
from one class (called a client) to another class (called a server). Notice that the class
that makes the request depends upon the collaborating server class; the client is said to
be coupled to the server. The serving class may have no dependence on the class using
the requested material, so clearly this relationship is not commutative. The
relationship in which two or more different classes form a component, thus developing a
PART_OF, is also called a HAS_A relationship.

If one object uses another object through another class, the dependency is now upon the
attributes and methods of the used object. Because of this additional complexity, we
choose to consider the uses relationship separately from simply the passing of
attributes.

CMU/SEI-95-TR-002

3. Terminology

3.1 Terms Specific to Object-Oriented Analysis and Design

In this report, we treat the term object as a primitive term. Objects have attributes,
methods, and identity (a name). The following terminology is a partial adaptation of
Booch's set of terms [Booch 94]. We provide these definitions so that the terminology
used to describe object-oriented software products is as uniform as possible.

Abstraction. The essential characteristics of an object that distinguish it from
all other kinds of objects, and thus provide, from the viewer's perspective, crisply-
defined conceptual boundaries; the process of focusing upon the essential
characteristics of an object.

Aggregate object (aggregation). An object composed of two or more other
objects. An object that is part of two or more other objects.

Attribute. A variable or parameter that is encapsulated into an object.

Class. A set of objects that share a common structure and behavior
manifested by a set of methods; the set serves as a template from which objects
can be created.

Class structure. A graph whose vertices represent classes and whose arcs
represent relationships among the classes.

Cohesion. The degree to which the methods within a class are related to one
another.^

Collaborating classes. If a class sends a message to another class, the classes
are said to be collaborating.

Coupling. Object X is coupled to object Y if and only if X sends a message to Y.

Encapsulation. The process of bundling together the elements of an
abstraction that constitute its structure and behavior.

Information hiding. The process of hiding the structure of an object and the
implementation details of its methods. An object has a public interface and a
private representation; these two elements are kept distinct.

Inheritance. A relationship among classes, wherein one class shares the
structure or methods defined in one other class (for single inheritance) or in more
than one other class (for multiple inheritance).

-1- Here, cohesion is limited to cohesion within a class.

CMU/SEI-95-TR-002

Instance. An object with specific structure, specific methods, and an identity.

Instantiation. The process of filling in the template of a class to produce a class
from which one can create instances.

Message. A request made of one object to another, to perform an operation.

Method. An operation upon an object, defined as part of the declaration of a
class.

Polymorphism. The ability of two or more objects to interpret a message
differently at execution, depending upon the superclass of the calling object.

Superclass. The class from which another subclass inherits its attributes and
methods.

Uses. If object X is coupled to object Y and object Y is coupled to object Z, then
object X uses object Z.

3.2. Comments on Terminology

In other contexts, cohesion can apply to many other aspects of the object-oriented
paradigm: cohesion of classes within a superclass, cohesion of instances of objects for a
specific class, or cohesion of superclasses within a system. We apply the term cohesion
to methods within a class. Some authors have considered various types of cohesion in
the context of structured analysis, such as temporal, functional, and logical cohesion.
Researchers may choose to explore these types of cohesion in the context of object-
oriented analysis and design.

10 CMU/SEI-95-TR-002

4. The Nature of Object-Oriented Software

4.1. Different Features Of Object-Oriented Products

One feature that makes objected-oriented software products different from earlier or
conventional software products is the use of procedures and subprograms. By the mid-
1960s, subprograms were used as a means of abstracting the main functions of a larger
software artifact. The realization that subprograms could serve as an abstraction
mechanism had three important consequences. First, languages were invented that
supported a variety of parameter-passing mechanisms. Second, the foundations of
structured programming were laid, manifesting themselves in language support for the
nesting of subprograms, and for the scope and visibility of declarations. Third,
structured design methods emerged, offering guidance to designers using subprograms
as the basic building blocks [Booch 94] for large systems.

The need to design and program larger applications caused several refinements to
structured design methods. Among these were the structured analysis and design
technique (SADT), Jackson structured programming, and the programming concept of
separate compilation. In retrospect, software in the 1970s and early 1980s saw
procedure-oriented programming, poor support for data abstraction, lack of strong data
typing, and global use of blocks of data.

Today, the conventional technique of structured programming is still procedure-
oriented, but is supported by programming languages that support separate compilation
of modules, data abstraction, strong data typing, and data encapsulation. That
structured programming is still procedure-oriented indicates an early emphasis on
implementation in the life cycle. Today and in the past, a major portion of the life cycle
is spent on implementing the design.

In contrast, object-oriented programming places greater emphasis on the design phase
of the software life cycle. The essence of the object-oriented design is that it decomposes
the system into objects, the basic building block of the object-oriented approach; gathers
together the data and the functions to be performed on the data; and encapsulates the
data and functions (methods) within the object.

The feature that makes object-oriented software products different from the
conventional procedure-oriented software products is the object itself. The features of
the object that become measurable are the number of attributes the object contains, the
number of methods the object has, the number of methods called from other objects, the
number of methods outside the called object, and the placement of the object in the class
hierarchy structure.

CMU/SEI-95-TR-002 11

Unique features of object-oriented programming and design impose added complexities
on the measuring process. These features—message passing, inheritance, and
polymorphism—require a suite of measures designed to handle them.

4.2 Shared Features Of Object-Oriented Products

Abstract data types exist in conventional procedure-oriented programming languages,
and classes can be implemented as abstract data types in most of the existing object-
oriented languages. However, one of the key differences between the conventional
implementation and the object-oriented implementation is the concept of inheritance.
Without inheritance, every class implemented as an abstract data type would be an
isolated unit.

The methods of an object are similar to the functions, programs, or subprograms that
are used in conventional programming, except that their functionality is limited to
specific object classes. An object's methods are measurable. Each of these coded
software modules can be measured by the earlier, more conventional measures.
Examples of such measures are Halstead's software science metrics, lines of code,
McCabe's cyclomatic complexity metric, and Albrecht's function points.

12 CMU/SEI-95-TR-002

5. A Taxonomy for Object-Oriented Software Measures

The object-oriented design approach gives rise to a natural taxonomy that incorporates
the salient features and properties of an object-oriented system. Our taxonomy captures
these properties hierarchically. It begins with the high-level characteristics of an object-
oriented system and moves down to the low-level characteristics.

System. We place the system and its components at the highest level. Although
a system can be subdivided into components, we view the components as acting
as a system. Also, the characteristics of a good component are those of a good
system and vice versa. The measurable characteristics of a system might include
the number of classes or class lattices in the system.

Coupling and Uses. Classes often interact with other classes to form a
subsystem. Characteristics of this interaction may indicate a complexity
resulting from too much coupling, or from using objects derived from objects that
have been obtained from yet another object. Such complexity can complicate the
programming process. Uses and coupling are related issues; uses is defined in
terms of coupling. We feel that the origin of uses and coupling in the interaction
of classes makes them a single taxon: both capture the interaction of classes.

Inheritance. Classes are found in a class structure diagram, often called a class
hierarchy lattice. Visible in the lattice are the inheritance relationships between
classes and their parents—the properties shared by both. Such relationships
may indicate to a designer where changes would improve the development. The
lattice itself contains interesting characteristics, such as the depth and breadth
of the lattice.

Class. Next on the taxonomy is the class, which contains the methods. The
class may have methods that are unnecessary or too complex to work together. It
may have extraneous data that complicates the programming process. The class
may be linked too closely to other classes or have characteristics that make it an
excellent candidate for inclusion in a library.

Method. Attributes and methods occur at the finest level of detail. While the
attributes and data structures are fairly well understood, the methods are
usually developed much like procedures are in structured programming. The
characteristics of procedures are known, and techniques to analyze them are
common. Methods have the additional complexity of calling objects other than
the object that contains them.

Careful inspection shows that this taxonomy encompasses all the characteristics of
object-oriented software products and captures the features of the design at the
appropriate levels. These taxa also give the best insight into potential areas of concern,
such as depth of inheritance, cohesion, size of objects, and system structure. (See Table
5-1.)

CMU/SEI-95-TR-002 13

5.1. Examples of Measures and Their Corresponding Taxon

Table 5- : Measures and Their Corresponding Taxon

System Coupling & Uses Inheritance Class Method

Abreu 93 SCI
SRI

SR2
SR3

CC2 CRl

CC3 CR2

CR3

Banker 91 OC OP

RL

RFC

Chen 93 CCM OCM CHM OXM RM
OACM

ACM CM

Chidamber 94 CBO DIT

NOC

WMC RFC

LOCM

Coppick 92 SSM MCC

(Flavors)

Laranjeira 90 Size

Lee 93 HC

PC

CC MC

Li 93 MPC DAC
NOM Size2

Sizel

(ClassicAda)

Moreau 90ab GSDM IL SSM MCC

(C, C++)

Sharble 93 NOT VOD WAC

Tegarden 92 SSM MCC

LOC

Williams 93 CBC

CSC

CCR COU

Total Measures 12 10 4 19 9

14 CMU/SEI-95-TR-002

5.2. Explanation of Table Acronyms

Abreu 94

Banker 91

Chen 93

Chidamber 94

SCI - System Complexity (total length of inheritance chain)

CC2 - Class Complexity (progeny count)

CC3 - Class Complexity (parent count)

CR1 - Class Reuse (% of inherited methods that are
overloaded)

CR2 - Class Reuse (number of times class is reused "as is")

CR3 - Class Reuse (number of times class is reused with
adaptation)

SRI - System Reuse (% reused "as is" classes)

SR2 - System Reuse (% reused classes with adaptation)

SR3 - System Reuse (library quality factor)

RFC - Raw Function Counts

OC - Object Counts (count of classes)

OP - Object Points

RL - Reuse Leverage

OXM - Operation Complexity Metric (within a class)

OACM - Operation Argument Complexity Metric

ACM - Attribute Complexity Metric

OCM - Operation Coupling Metric

CCM - Class Coupling Metric

CM - Cohesion Metric

CHM - Class Hierarchy of Method

RM - Reuse Metric (of classes)

WMC - Weighted Methods per Class

DIT - Depth of Inheritance Tree

NOC - Number Of Children

CBO - Coupling Between Object classes

RFC - Response For a Class

LCOM - Lack of Cohesion Of Methods

CMU/SEI-95-TR-002 15

Coppick 92 SSM - Software Science Metrics (Halstead)

MCC - McCabe's Cyclomatic Complexity metric

Laranjeira 90 Size - Size of Object-Oriented system

Lee 93 MC - Method Complexity

CC - Class Complexity

HC - Hierarchy Complexity of system

PC - Program Complexity

Li 93 DAC - Data Abstraction Coupling

(Number of abstract data types)

NOM - Number Of local Methods

MPC - Message Passing Coupling (number of send
statements in a class)

Sizel - number of semi-colons in a class

Size2 - number of attributes + number of local methods

Moreau 90ab SSM - Software Science Metrics (Halstead)

MCC - McCabe's Cyclomatic Complexity metric

IL - Inheritance Lattice (stated, but no measure indicated)

GSDM - Graph of Source and Destination of Messages (no
measure given)

Sharble 93 WAC - Weighted Attributes per Class

NOT - Number Of Tramps (count of extraneous parameters)

VOD-Violations Of the law of Demeter [Lieberherr 89]

Tegarden 92 SSM - Software Science Metrics (Halstead)

MCC - McCabe's Cyclomatic Complexity metric

LOC- Lines Of Code

Williams 93 COU-Count Of Uses

CBC - Count of Base Classes

CSC - Count of Standalone Classes

CCR - Count of number of Contains Relationships

16 CMU/SEI-95-TR-002

6. Annotated Bibliography

This bibliography enables the practitioner to scan the literature on software measures
and develop a suite of metrics that apply in his or her environment. Section 6.1
contains most of the recent articles that present a software measure and specifically
indicate how the measure is determined. Section 6.4 includes texts on general topics
directly related to object-oriented software design and software measure. Section 6.2
lists the key seminal works of Halstead, McCabe, and Albrecht, since they provide a
historical base for the discipline. In the annotations below, we have attempted to
elucidate the key contributions of each article or text.

6.1. Articles Related to Object-Oriented Measures

Abreu, Fernando B. & Carapuca, Rogerio. "Candidate Metrics for Object-Oriented
Software within a Taxonomy Framework." Journal of Systems Software 26, 1 (July
1994): 87-96.

The authors provide a taxonomy for metrics of object-oriented products and
processes. This taxonomy, TAPROOT, deals with both product and process
metrics plus some "hybrid" metrics that measure both. The author's taxonomy is
based on a Cartesian product of the two vectors: (design, size, complexity, reuse,
productivity, quality) and (method, class, system). This produces eighteen
possible cells into which a metric can reside. Class and system quality metrics
that the authors suggest are based on counts of observed defects, failures, and
time between failures. TAPROOT is presented as a starting point from which
further refinement and verification can follow.

Aksit, Mehmet & Bergmans, Lodewijk. "Obstacles in Object-Oriented Software
Development," pp. 341-358. Proceedings: OOPSLA Conference. ACM Press, October
1992.

Based on the results of some pilot studies, the authors have formed their own
viewpoint of object-oriented methods and have documented some obstacles. The
authors state that each phase in object-oriented software development can be
subdivided into three sub-components: preparatory work, structural relations,
and object interactions. A short summary of state-of-the-art object-oriented
methods follows the subdivision taxa.

CMU/SEI-95-TR-002 17

Banker, Rajiv D.; Kauffman, Robert J.; & Kumar, Rachina. "An Empirical Test of
Object-based Output Measurement Metrics in a CASE Environment." Journal of
Management Information Systems 8, 3 (Winter 1991): 127-150.

This 23-page article begins by reporting studies that indicate the use of CASE
without having measurement programs in place. The authors' main thrust is the
issue of output measurement in a CASE environment.

Their comments on function points (FP) are

FP components do not follow naturally from an object-based CASE
environment.

Application of FP to CASE-generated code is subjective and
inconsistent.

Albrecht's original FP weights need to be re-calibrated for CASE
tools.

The usual Technology-Complexity-Factor (TCP) adjustment for FP may
need revised for CASE since TCP is based on 3GL development.

The authors propose a short-form variation of FP called Raw-Function-Counts
and two new object-based output measures, Object-Counts and Object-Points.
The authors statistically validate the various metrics to estimate effort, and their
results are significant. These proposed measures worked well in the CASE
environment created by the ICE software. The authors conclude, "Since objects
were found to match project managers' mental model of the functionality of
software developed with object-based CASE, information about objects would be
useful to promote improved software development process control."

Byard, Cory. "Software beans: Class metrics and the mismeasure of software." Journal
of Object-Oriented Programming 7, 5 (September 1994): 32-34.

This non-technical article discusses "why measure software," "class metrics," and
"mismeasurement." The author comments, "class metrics do not measure
complexity, do not measure the size of an application, and do not measure the
quality of software." Class metrics "are indicators of programming style." The
author concludes, "The key is not measurement, but process"; and, "developing
new measures that analyze implementation vocabulary complexity, module
cohesion and coupling, and development progress will help."

Chen, J-Y. & Lum, J-F. "A New Metric for Object-Oriented Design." Information of
Software Technology 35, 4 (April 1993): 232-240.

The authors use Basili's Goal-Question-Metric model to develop metrics for
complexity for object-oriented design. The authors propose eight metrics that are
identifiable at the design stage:

18 CMU/SEI-95-TR-002

1. operation complexity metric 5. class coupling metric

2. operation argument complexity metric 6. cohesion metric

3. attribute complexity metric 7. class hierarchy metric

4. operation complexity metric 8. reuse metric

Metrics 1 through 3 are subjective in nature; metrics 4 through 7 involve counts
of features; and metric 8 is a boolean (0 or 1) indicator metric. To validate these
metrics, the authors conduct an experiment involving six "experts" whose
subjective class scores are regressed against the eight metrics. The resulting
regression equation is used to score future object classes. The paper does not
report the original data, the complete SAS output, or the criteria that the
"experts" use to measure complexity.

Chidamber, Shyam R. & Kemerer, Chris F. "Towards a Metrics Suite For Object
Oriented Design," pp. 197-211. Proceedings: OOPSLA'91. Phoenix, Arizona, October 6-
11,1991. New York, New York: ACM SIGPLAN Notices, 1991.

The authors propose six metrics that they evaluate relative to seven of Weyuker's
properties. The authors' objective is to propose metrics that are not language
specific. They introduce measures that capture some features such as coupling,
cohesion, complexity, scope, and methods (defined as responses to possible
messages).

Chidamber, Shyam & Kemerer, Chris F. "A Metrics Suite for Object-Oriented Design."
IEEE Transactions on Soßware Engineering 20, 6 (June 1994): 476-493.

The authors use the theoretical base for ontological principles proposed by Bunge
as a means of establishing a basis upon which to discuss the object-oriented
metrics suite. Much of the material in the first four pages is the same as in their
earlier paper in 1991. The authors define six metrics and evaluate them with
respect to six of Weyuker's nine properties. They propose six metrics for object
classes:

1. Weighted Methods per Class (WMC).

2. Depth of Inheritance Tree (DIT).

3. Number Of Children (NOC), number of immediate subclasses
subordinate to a class in the hierarchy.

4. Coupling Between Object classes (CBO).

5. Response For a Class (RFC), cardinality of the set of all methods that
can be invoked by some method in the class.

6. Lack of Cohesion Of Methods (LCOM), the number of method pairs
whose similarity is zero minus the counts of the method pairs whose
similarity is not zero.

These metrics are based on three assumptions: the inheritance tree is full, two
classes can have a finite number of identical methods, and certain counts of

CMU/SEI-95-TR-002 19

features are random variables that are identically and independently
distributed.

Churcher, Neville & Sheppard, Martin J. "Towards a Conceptual Framework for
Object-Oriented Software Metrics." Software Engineering Notes 20, 4 (April 1995): 69-
75.

The authors caution that software measures for 0-0 systems present
significantly greater challenges than their conventional counterparts. They
propose a set of terms to serve as a basis for comparison of models of 0-0
systems. They emphasize the problems arising from different interpretations of
coupling and uses. They summarize by stating "it seems premature to proceed
with the speculative development of specific metrics due to the absence of a
satisfactory framework fro their validation."

Coppick, Chris J. & Cheatham, Thomas J. "Software Metrics for Object-Oriented
Systems," pp. 317-322. Proceedings: ACM CSC '92 Conference. Kansas City, Missouri,
March 3-5, 1992. New York, New York: ACM Press, 1992.

The authors extend the Halstead metric and McCabe metric to object-oriented
software design. The authors' examples are in LISP Flavors. An undefined tool
(code not included) is applied to LISP source code, and the usual software science
metrics are computed. The authors count the number of methods and observe
that increased abstraction reduces programming effort. Nothing concrete is done
with McCabe's metric.

Gowda, Raghava G. & Winslow, Leon E. "An Approach for Deriving Object-Oriented
Metrics," pp. 897-904. Proceedings: IEEE 1994 National Aerospace and Electronics
Conference. Dayton, Ohio, May 23-27, 1994. Los Alamitos, California: IEEE Computer
Society Press, 1994.

The authors comment, "The object-oriented metrics proposed so far seem to
concentrate on the design of a single class or the class structure and ignore the
overall design of the system and program." They propose a classification scheme
for object-oriented metrics with the five categories of system metrics, subsystem
metrics, class metrics, object metrics, and reusability metrics. They discuss and
contrast each of the methodologies of Rumbaugh and Wirfs-Brock. The authors
claim to have a list of metrics that can be applied to some of the phases of each
methodology. Although the authors actually list some features of the phase and
methodology that can be measured, they do not indicate how to measure the
feature.

Jones, Capers. Programming Productivity. New York, NY: McGraw-Hill, 1986.

The author summarizes the first 30 years of industrial and commercial
programming. The first two chapters of this four-chapter book are about the

20 CMU/SEI-95-TR-002

science of measurement and serve as an excellent introduction to the topic of
measurement. In the third chapter, the author isolates 20 factors, supported by
historical data, that have affected programming productivity.

1. The language used 11. Maintenance

2. Program size 12. Reuse (modules & design)

3. Personnel experience 13. Code generators

4. Requirements 14. 4GLs

5. Complexity of program & data 15. Separation of development locales

6. Use of structured methods 16. Defect detection & removal

7. Program class 17. Documentation

8. Program (application area) 18. Prototyping

9. Tools & environment 19. Project teams & organization

10. Enhancing existing systems 20. Morale & compensation of staff

Chapter four explores the intangible factors, which are not readily quantifiable,
that affect productivity. These factors include size of staff and enterprise,
stability during the project, training for staff and users, computing facilities,
legal issues, project measurement mechanisms, outsourcing, project dynamics,
and user participation among all of these. This is a good book for the beginning
software engineer. Jones has a second edition of this work in publication.

Laranjeira, Luiz. "Software Size Estimation of Object-Oriented Systems." IEEE
Transactions on Soßware Engineering 16, 5 (May 1990): 510-522.

The author presents a size estimation model that takes advantage of the
characteristics of object-oriented systems and their specification. He also
provides a confidence interval for the expected system size. COCOMO is applied
in this setting to produce cost estimates.

Lee, Yen-Sung; Liang, Bin-Shiang; & Wang, Feng-Jian. "Some Complexity Metrics for
Object-Oriented Programs Based on Information Flow," pp. 302-310. Proceedings:
CompEuro. Paris-Ivry, France, May 24-27, 1993. Los Alamitos, California: IEEE
Computer Society Press, 1993.

The authors use Weyuker's nine properties as a basis of evaluation. They define
four metrics: method complexity (MC), class complexity (CC), hierarchy
complexity (HC), and program complexity (PC). These measures are based on
various forms of the basic model:

size*(input coupling + output coupling)A2

None of the proposed metrics satisfy Weyuker's seventh property.

CMU/SEI-95-TR-002 21

Li, Wei & Henry, Salley. "Maintenance Metrics for the Object Oriented Paradigm," pp.
52-60. Proceedings: First International Software Metrics Symposium. Baltimore,
Maryland, May 21-22, 1993. Los Alamitos, California: IEEE Computer Society Press,
1993.

The authors state that metrics for the object-oriented paradigm have yet to be
studied. Since terminology varies among object-oriented programming
languages, the authors consider the basic components of the paradigm as objects,
classes, attributes, inheritance, method, and message passing. They propose
that each object-oriented basic concept implies a programming behavior. They
include six metrics from Chidamber [Chidamber 91]:

Depth of Inheritance Tree (DIT) Coupling Between Objects (CBO)

Number Of Children (NOC) Response For Class (RFC)

Lack of Cohesion Of Class (LCOM) Weighted Method per Class (WMC)

The authors construct a Classic-Ada metric analyzer to collect metrics from
Classic-Ada design and source code. They define five additional metrics to
complete the modeling:

Data Abstraction Coupling (DAC) Number of Methods (NOM)

of semicolons per class (Sizel) # of methods per # attributes (Size2)

Message Passing Coupling (MPC)

A regression analysis is used with Change = number of lines changed in the
artifact's history (classes) as the dependent variable. The authors' analysis of
the results reveals that the metrics chosen (all 10) can predict the number of
changes. There is no individual breakdown of which of these metrics is
significant in the prediction.

Lieberherr, Karl J. & Holland, Ian M. "Assuring Good Style for Object-Oriented
Programs." IEEE Soßware 6, 5 (September 1989): 38-48.

The authors put forward a simple law, the Law of Demeter, that encodes the
ideas of encapsulation and modularity in an easy-to-follow form for object-
oriented programmers. The law has two forms: class and object forms. The class
form comes in two versions: minimization and strict versions.

Class minimization version - Minimize the number of acquaintance classes
over all methods.

Class strict version - All methods may have only preferred-supplier classes.

Objects - All methods may have only preferred-supplier objects.

The motivation behind the Law of Demeter is to ensure that the software is as
modular as possible. The law effectively reduces the occurrences of nested
message sending and simplifies the methods.

22 CMU/SEI-95-TR-002

Moreau, Dennis R. & Dominick, Wayne D. "A Programming Environment Evaluation
Methodology for Object-Oriented Systems: Part I - The Methodology." Journal of Object-
Oriented Programming 3, 1 (May/June 1990): 38-52.

The authors set forth three objectives for their research (paraphrased below):

1. Establish an evaluation methodology to measure impact of object-
oriented design on the software development process.

2. Establish domain-specific problem decomposition and solution
guidelines to support comparisons of object-oriented approaches.

3. Perform verification of object-oriented metrics.

The principles of the proposed method are based on user activities, are
environment-independent, and are based on well-constructed experiments. The
authors claim that the method is extensible, captures the structural object-
oriented aspects of the software, and provides for the automatic capturing of the
metrics-related data. The authors include Halstead's little n and big N metrics
and McCabe's cyclomatic complexity metrics, along with two measures that are
based on object-oriented features, a graph of the source and destination of all
messages, and an inheritance lattice. This paper provides a clear overview of a
method for measuring object-oriented software.

Moreau, Dennis R. & Dominick, Wayne D. "A Programming Environment Evaluation
Methodology for Object-Oriented Systems: Part II - Test Case Application." Journal of
Object-Oriented Programming 3, 3 (September/October 1990): 23-32.

In this companion article to their article above, Moreau and Dominick discuss a
refinement of the objectives set forth previously into theoretical, methodological,
developmental, and evaluative components. The methodology is applied in an
interactive graphics application domain. The test case was completed in 11
phases:

1- Identify applications domain {interactive graphics editor}

2- Identify test development systems {C & C++}

3- Identify development paradigms {GKS for C & object-oriented for C++}

4- Identify metrics {those in Moreau [Moreau 1990a]}

5- Identify and classify development activities {three separate tasks}

6- Establish evaluative criteria {Basili's direct cost/quality criteria}

7- Develop environment independent experiments

8- Prepare environments {no functional differences}

9- Develop environment-specific experiments {8 subjects, 4 in each
experimental group}

10- Perform experiments

11-Analyze results {non-parametric Wilcoxon statistics P=0.07}

CMU/SEI-95-TR-002 23

The authors state, "This research has formally established the primary metric
data definitions that completely characterize the unique aspects of object-
oriented software systems, including the inheritance lattice and message graph."

Park, Robert E. Software Size Measurement: A Framework for Counting Source
Statements (CMU/SEI-92-TR-20, ADA258304). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1992.

This technical report presents guidelines for defining, recording, and reporting
two frequently used measures of software size: lines of code and logical source
statements. Park proposes a general framework for constructing size definitions
and uses it to derive operational methods for reducing misunderstandings in
measurement results.

Poulin, Jeffrey S. & Brown, David D. "Measurement-Driven Quality Improvement in
the MVS/ESA Operating System," pp. 17-25. Proceedings: Software Metrics Symposium.
London, U.K., October 24-26, 1994. Los Alamitos, California: IEEE Computer Society
Press, 1994.

This paper describes experiences, quality initiatives, models, and metrics used to
obtain quantifiable results in a large, complex software system. Although no
object-oriented metrics were actually developed or computed, this paper shows
that the introduction of object-oriented design and the construction of high
quality reusable frameworks played a critical role in defect reduction.

Sharble, Robert C. & Cohen, Samuel S. "The Object-Oriented Brewery: A Comparison
of Two Object-Oriented Development Methods." SIGSOFT Soßware Engineering Notes
18, 4 (April 1993): 60-73.

This paper reports on research to compare the effectiveness of two methods for
the development of object-oriented software. The two methods compared are
responsibility-driven methods and data-driven methods. Each of the methods
was used to develop a model of the same system. The authors use a suite of
object-oriented metrics to collect measures of each model. The model developed
with the responsibility-driven method was found to be less complex, to have less
coupling between objects, and to have more cohesion within objects. The
research produced three new metrics that can be useful for measuring object-
oriented designs.

WAC - Weighted Attributes per Class.

NOT - Number of Tramps (number of extraneous parameters in
signatures of methods of a class.

VOD - Violations of the Law of Demeter.

24 CMU/SEI-95-TR-002

Symons, Charles. "Function Point Analysis: Difficulties and Improvements." IEEE
Transactions on Soßware Engineering 14, 1 (January 1988): 2-11.

The author critically reviews Albrecht's function point analysis, proposes ways of
overcoming the weaknesses identified, and validates by experimentation the
proposed improvements. Some criticisms are that FPs underweight systems that
are complex internally and FPs are not "summable." The author proposes the
"Mark II" formula for information processing component size in unadjusted
function points which is:

UFP = NI*WI + NE*WE + NO*WO

where

NI = number of input data elements

WI = weight of an input data type

NE = number of entity-type references

WE = weight of an entity-type reference

NO = number of output data element types

WO = weight of output data element type

Symons determines a set of weights from 12 systems and recalibrates these
weights to match Albrecht's original UFP values for systems under 500 FPs. He
concludes that

• Mark II involves an understanding of entity analysis, no conventions
yet.

• Mark II has fewer variables to count, but more technical factors to
consider.

• Albrecht's FP is not a technology-independent measure of system size
and neither is Mark II, since a change in technology involves
recalibrating.

• FP analysis works for business applications, but may not work well for
scientific or technical applications.

Taenzer, David; Ganti, Murthy; & Podar, Sunil. "Object-Oriented Reuse: The Yo-yo
Problem." Journal of Object Oriented Programming. (September/October 1989): 30-35.

The authors review two basic approaches to software reuse, construction, and
inheritance, and present some basic problems and conflicts between
encapsulation and inheritance. They discuss the basic styles for reuse of
construction and subclassing. Based on their own experiences in reuse, the
authors give examples of message control trees. This discussion leads to the
definition of the "Yo-yo" problem, where resolutions of a message goes up and
down the message tree.

CMU/SEI-95-TR-002 25

Tegarden, David P.; Sheetz, Steven D.; & Monarchi, D.E. "Effectiveness ofTraditional
Metrics for Object-Oriented Systems," pp. 359-368. Proceedings 25th Hawaii
International Conference on System Sciences 4. Kauai, Hawaii, January 7-10, 1992. Los
Alamitos, California: IEEE Computer Society Press, 1991.

The authors begin by quoting Moreau: "traditional metrics are inappropriate for
object-oriented systems for several reasons..." [Moreau 90]. This paper addresses
two questions:

1. Can existing metrics developed for structured systems be used as
effective measures of object-oriented systems? and

2. Can certain unique aspects of object-oriented systems be measured by
traditional metrics?

In the background section, the authors create a small taxonomy of complexity
based on Card and Conte [Card 90], [Conte 86]. They discuss the traditional
SLOC, Halstead metrics, and the cyclomatic metric and these metric's potential
use in the object-oriented setting. The authors conclude, "The use of the
traditional metrics may be appropriate for the measurement of the complexity of
object-oriented systems. Even though the order of magnitude of the traditional
metrics may be suspect, the directionality seems to be correct."

Waguespack, Leslie J, Jr. & Badlani, Sunil. "Software Complexity Assessment: An
Introduction and Annotated Bibliography." Software Engineering Notes 12, 4 (October
1987): 52-71.

The authors provide an introduction to software complexity and provide an
exhaustive list of nineteen categories of complexity research. The works listed in
the article cover the years 1974-1987, plus one entry from 1967. Some 500 works
are listed in the form [Lastname##] where ## is the last two digits of the year,
and 100 of these were selected for the annotated bibliography. The annotated
bibliography contains the complete reference citation and the original abstract
(or an excerpt from the work which portrays the author's intent) followed by the
annotation.

Wang, A.S. & Dunsmore, H.E. "Early Software Size Estimation: A Critical Analysis of
the Software Science Length Equation and a Data-Structure-Oriented Size Estimation
Approach," pp. 211-222. Proceedings: Third Symposium on Empirical Foundations of
Information and Soßware Science. Rosklide, Denmark, October 21-24, 1985. New York,
New York: Plenum Publishing Co., 1985.

The authors address early size estimation by emphasizing the weaknesses of the
current size estimation metrics in 1985. They conjecture that program size can
be estimated as a function of some other measurable quantities related to the
program. Empirically, data from Pascal programs suggest that the Halstead
length equation is not suitable for predicting the size of large Pascal programs.
The authors found that the count of the VAR (the number of unique variables) is
an acceptable size estimation. Experimental results yield:

26 CMU/SEI-95-TR-002

S = 102 + 5.31*VAR as an estimate with r=0.94 and mean

MRE = 0.30

Based on these results, early estimation of program size can be improved at the
end of the design stage by using the VAR count. The authors caution that these
are "lab" results, and software that was produced in the lab was not nearly as
large as that produced in industry.

Weyuker, Elaine. "Evaluating Software Complexity Measures." IEEE Transactions on
Software Engineering 14, 9 (September 1988): 1357-1365.

Weyuker establishes a standard for software measures in this seminal article.
She states the conditions for a measure as follows:

"All the measures we consider depend only on the syntactic features
of the program."

P = Q means that programs P and Q halt on the same input.

P;Q means that P is augmented by Q (a concatenation).

The measure of P is denoted by | P |.

The nine properties of measures:

1. (3P)(3Q) (| Pj *| Q |).

2. Let c be a number >0. Then there are finitely many programs of
complexity c.

3. There are distinct programs P and Q such that | P | = | Q |.

4. (3P)(3Q) (PsQ and | P . j * | Q |).

5. (VPHVQ) (| P| <| P;Q | and | Q | <| P;Q |).

6. (3 P) (3 Q) 0 R)< | P | = | Q |) & (| P ; R | * | Q ; R |)
and (3 P) (3 Q) (3 R) (| P | =|Q|)&(|R;P| * | R ; Q |).

7. There are program bodies P and Q such that Q is formed by
permuting the order of the statements of P; and |P| * |Q|.

8. If Pis a renaming of Q, then | P | = | Q |.

9. (3PM3Q) (|P| + | Q'| < |P;Q|).

Williams, John D. "Metrics for Object Oriented Projects," pp. 13-18. Proceedings: Object
Expo Euro Conference. London, U.K., July 12-16, 1993. New York, New York: ACM
SIGS Publications, 1993.

The author poses the question, "Why metrics?" The answer, he says, is in both
project management metrics and software development metrics. He proposes a
"3db" curve for monitoring project progress. Neither the 3, the d, nor the b is
defined. For software development, the author suggests using counts of "uses,"
counts of the number of base classes (classes that represent reused code), counts
of stand-alone classes, and counts of the number of "contains" relationships in a

CMU/SEI-95-TR-002 27

class. He comments, "depending on how deep a class is in the inheritance tree, it
may have many 'hidden' members and methods."

6.2. Early Seminal (Much Quoted) Works of Significance to the Discipline

Albrecht, A J. "Measuring application development productivity," pp. 83-92.
Proceedings: IBM Applications Development Joint SHARE/GUIDE Symposium. 1979.

This is the seminal work on function points. Albrecht's intent is to measure the
amount of functionality in a software product based on either the coded product
or a structured specification document.

Halstead, M. H. Elements of Software Science. North-Holland, NY: Elsevier Publishing,
1977.

This is the original early work on measuring coded software products based on
lexical issues of the product, such as numbers of operators, operands, unique
operators, and unique operands. The theory for both the length metric and the
volume metric is based on principles of cognitive psychology and a subjectively
determined constant called the Stroud Number.

McCabe, T.J. "A Complexity Measure." IEEE Transactions on Software Engineering 2,
4 (April 1976): 308-320.

McCabe's cyclomatic complexity metric is the first of the attempts at measuring
complexity. The metric is based on the features of a directed graph
representation of the software product.

6.3. Textbooks on Software Metrics

Card, David L. & Glass, Robert L. Measuring Software Design Quality. Englewood
Cliffs, NJ: Prentice-Hall, 1990. ISBN 0-13-568593-1.

This short paperback text (104 pages plus appendices and references) is quite
readable. The book proposes a small set of measures (referred to as "primitive
design metrics") that are centered around design quality. The authors' intent is
to provide the practitioner with criteria for improving software designs to
promote productivity, quality, and maintainability. Most of the examples and
data come from a structured design environment with FORTRAN as the
language.

28 CMU/SEI-95-TR-002

Conte, S.D.; Dunsmore, H.E.; & Shen, V.Y. Soßware Engineering Metrics and Models.
Menlo Park, Calif.: Benjamin/Cummings, 1990.

This text presents the classical product measures, classical models of process,
and the product and process measures currently available in the late 1980s. The
authors include a chapter on experimental design and basic statistical inference.
They present a set of model evaluation criteria that practitioners should find
useful. They examine effort from two viewpoints, macro and micro
environments, and include the classical studies that are associated with each of
these environments. This text has worked well for me in a senior-level software
measures class.

Fenton, Norman E. Software Metrics, A Rigorous Approach. London: Chapman & Hall,
1991. ISBN 0-412-40440-0.

This text is solid and well written. Chapter 1 motivates the discipline. Chapters
2 through 6 provide a coherent framework for the many diverse activities that
comprise software metrics. Among these are measurement theory, design of
experiments, and data collection. Chapters 8 through 13 cover process measures,
product measures, and resource measures. The author has provided an
extensive, partially annotated bibliography.

Zuse, Horst. Soßware Complexity Measures and Methods. Berlin: Walter de Gruyter &
Co, 1990. ISBN 3-11-012226-X.

This is the most comprehensive coverage of software complexity measures
available in 1990. The text covers the issue of "metric versus measure,"
discusses measurement, and discusses the various ways that data can be
classified. The author includes at least ninety measures that have appeared in
the literature (mostly European sources). The text is recommended as a
reference for researchers and instructors.

6.4. Textbooks on the Object-Oriented Approach

Booch, Grady. Object-Oriented Analysis and Design, Second Edition. Redwood City,
Calif: Benjamin/Cummings, 1994. ISBN 0-8053-5340-2.

This is a solid text for learning the essence of the object-oriented approach. It
covers the notation of the method, discusses analysis and design strategies, and
contains an extensive bibliography. The text is a good reference book and a good
text for an upper-level undergraduate class.

CMU/SEI-95-TR-002 29

Coad, Peter & Yourdon, Edward. Object-Oriented Analysis, Second Edition. Englewood
Cliffs, NJ: Yourdon Press, 1991. ISBN 0-1362-9981-4.

The authors cover object-oriented analysis in a straight-forward manner and
introduce an object-oriented analysis (OOA) methodology consisting of five steps:
identifying classes and objects, identifying structures, identifying subjects,
defining attributes, and defining services. All of these items are combined into
an "object diagram," which resembles a dataflow diagram combined with an
entity-relationship diagram. The book's strength is the discussion of
management issues that emerge from using object-oriented techniques.

Jacobson, I.; Christerson, M.; Jonsoon, P.; & Overgaard, G. Object-Oriented Software
Engineering. Reading, Me.: Addison-Wesley, 1992. ISBN 0-2015-4435-0.

This text serves as a good introduction to the object-oriented technique. It
presents object-oriented software engineering (OOSE) as a new methodology that
emphasizes the interaction of the user with the system and emphasizes the
problem domain. The text contains clear examples of the object-oriented
approach at all levels of software development. Smooth reading of this text is
impeded by frequent typographical errors.

Rumbaugh, J. et al. Object-Oriented Modeling and Design. Englewood Cliffs, NJ:
Prentice-Hall, 1991. ISBN 0-1362-9841-9.

This text is a solid coverage of the subject. The authors propose a complete
methodology, the object modeling technique (OMT), which covers analysis,
design, and implementation. The authors contrast their OMT with structured
analysis and design and with Jackson's structured development method. For
those of us who are familiar with the procedure-oriented techniques, the text
provides a smooth transition to object-oriented techniques.

Wirfs-Brock, Rebecca; Wilkerson, B; & Weiner, L. Designing Object-Oriented Software.
Englewood Cliffs, NJ: Prentice-Hall, 1991. ISBN 0-1362-9825-7.

The authors define the object-oriented approach and provide a complete coverage
of object-oriented principles. They emphasize a responsibility-driven viewpoint
of analysis and design that emphasizes clients and servers. They also suggest
that quality of design can be measured by counts of the number of classes, the
number of subsystems, the number of contracts per class, and the number of
abstract classes. The diagrams are clear and reinforce the material.

30 CMU/SEI-95-TR-002

6.5. Significant Articles on the Object-Oriented Approach

Coleman, D.; Dollin, C; & Jeremaes, P. "Fusion: A Second Generation Object-Oriented
Analysis and Design Method," pp. 189-193. Proceedings: Object EXPO Europe
Conference. London, U.K., July 12-16, 1993. New York, New York: ACM SIGS
Publishing, 1993.

The authors propose a method that incorporates the methods of Booch,
Rumbaugh, and others to provide a direct route from requirements to
implementation. This method, fusion, is a systematic method for use by medium-
to large-size teams in the industrial environment and was developed at Hewlett-
Packard Labs, Bristol, UK.

6.6. Texts on Mathematics and Statistics Relating to Measures

Mansfield, Maynard. Introduction to Topology. Princeton, NJ: Van Nostrand, 1963.

This is a classic text on topology. This small book (116 pages) covers the basics of
point set topology at the undergraduate level and is a source of discussion for
metrics and metric spaces.

Sachs, Lothar. Applied Statistics: A Handbook of Techniques, Second Edition. New
York, NY: Springer-Verlag, 1984. ISBN 0-3871-6835-4.

This text is an excellent reference for statistical techniques and the concept of
measuring phenomena so that they can be evaluated statistically. The text
contains a wide range of tables of value to statisticians. It is also a good source of
non-parametric statistical procedures.

CMU/SEI-95-TR-002 31

32 CMU/SEI-95-TR-002

7. Examples of Computation of Measures

In this section, we compute the measures that are representative of each taxon. We
chose two examples that represent object-oriented design and implementation. The first
is a computer performance simulation written in C++; the second is a car dashboard
instrumentation written in Ada95.

7.1. Representative Measures for Each Taxon

As indicated in Section 5.1., many measures have been presented in the literature on
object-oriented software product measures. We choose five measures, one representing
each of our taxa, that we feel are representative of an entire suite of measures. These
measures are listed in Table 7-1 below.

Tab] e 7-1: Representative Measures

Taxon Measure
Chosen for
Taxon

Description of Measure Reference

Method MCC McCabe's Cyclomatic Complexity metric [Tegarden 92]

[McCabe 76]

Class Size2 Total number of attributes and methods
for a class

[Li 93]

Inheritance DIT The depth of the inheritance tree [Chidamber
94]

Coupling
and Uses

CCM The summation of the number of
accesses to other classes, the accesses by
other classes, and the number of 'co-
operating' classes.

[Chen 93]

System SCI The total number of edges in the
hierarchy graph for the system.

[Abreu 93]

CMU/SEI-95-TR-002 33

7.2. C++ Example (Computer Performance)

This example is based on the sample application program taken from the Johnsonbaugh
and Kalin text on object-oriented programming in C++ [Johnsonbaugh 95]. The C++
implementation code for the methods is omitted, some documentation has been added,
and the #include statements are not included. This example is not intended to be
executable, but to emphasize the computation of the various measures that apply to an
object-oriented software product.

This example, shown in Figure 7-1, is the design and top-level implementation of a
software artifact to simulate the measurement of computer performance. The design
consists of creating two base classes, BenchMark and Computer. Class BenchMark has
JobA, JobB, and JobC as derived classes. Class Computer has DeskTop and Mainframe
as derived classes, and DeskTop has WS (Workstation) and PC (Personal Computer) as
derived classes. A program, Testlt, simulates a computer "running" a benchmark and
outputting the results of the test. The relationships between the base classes and the
derived classes are evident in Figure 7-1.

BenchMark

ZJ,
Computer

JobA JobB JobC r\
MainFrame DeskTop

Z\
WS PC

Figure 7-1: Class Hierarchy Chart

A partially coded implementation of the Computer Performance example follows:

const int MaxName = 100;
const float Tolerance = 0.01;

34 CMU/SEI-95-TR-002

class Test;
class BenchMark {
friend Test;
protected:

// Computer instructions are broken down into categories
// by percentage [expressed as a decimal, 50% is 0.50]
float alP; // Arithmetic/logic instructions
float mP; // Memory-
float cP; // Control instruction
float ioP; // Input/output instruction
float ic; // Executed instruction count
char name[MaxName + 1];

public;
BenchMark() // base class constructor
{

init();
strcopy(name, "?????");

}

BenchMark(char* n)
{

init();
// includes if-then-else stmt checking length of n
// McCabe's metric (MCC) is 2

}

void report()
{

// cout statements to print values of variables
} // MCC = 1

int okay() // Checks to see if instruction percentages sum
// within tolerance to 1.0

{
return fabs(1.0 -(alP + mP + cP + ioP)) <= Tolerance;

} // MCC = 2

void init_error () // Print error message when invoked
{

// single cout statement
} // MCC =1

private:
void init() // Initialize percentages to 0.0
{

alP = cP = mP = ioP = ic = 0.0;
}

}; // === end of class BenchMark ===

class JobA : public BenchMark {
// This instantiation emphasizes arithmetic/logic and
// control statements with moderate memory use and low I/O.
public:
JobA() : BenchMark("Job A") // JobA constructor
{

alP =0.50; cP = 0.20;
mP = 0.20; ioP = 0.10;
ic = (float) 4500301;
if (!okay()) init_error;

CMU/SEI-95-TR-002 35

JobC () : BenchMark(

}
};

alP
mP
ic
if

= 0.153;
= 0.577;
= (float)
(!okay())

// === end

}
}; // === end of class JobA ===

class JobB : public BenchMark {
// This instantiation emphasizes arithmetic/logic and
// control statements with light memory use and no I/O.
public:
JobB() : BenchMark("Job B") // JobB constructor
{

alP =0.77; cP = 0.166;
mP = 0.064; ioP = 0.0;
ic = (float) 6700909;
if (!okay()) init_error;

}
}; // === end of class JobB ===
class JobC : public BenchMark {
// This instantiation emphasizes low arithmetic/logic and
// control statements with heavy memory use & moderate I/O.
public:

"Job C") // JobC constructor

cP = 0.0059;
ioP = 0.26;

10400500;
init_error;

class Computer {
friend TeStlt;
protected:
// cpi = cycles per instruction

// Arithmetic/logic cpi
// Control cpi
// Memory cpi
// Input/output cpi

Cycle time in nanoseconds
char name [MaxName + 1];
float costU; // Upper bound of cost range in dollars
float costL; // Lower bound of cost range in dollars

protected:
Computer(float al, float c, float m, float io, float

t, char* n, float lbd, float ubd)
{

alcpi = al; ccpi = c; iocpi = io;
mcpi = m; ct = t;
if (strlen(n), MaxName) strcpy(name, n);
else strncpy(name, n, MaxName);
costU = ubd; costL = lbd;

} // MCC =2
void report ()
{

// cout statements to print cost range, time, and cpi
values

} // MCC = 1
}; // === end of class Computer ===

36 CMU/SEI-95-TR-002

float alcpi;
float ccpi ;
float mcpi ;
float iocpi;
float ct; //

class Desktop: public Computer {
protected:
Desktop(float al, // Arithmetic/logic

float c, // Control
float m, // Memory
float 10, // Input/output
float t, // Cycle time in nanoseconds
char* n, // Name
float 1, // Lower bound of cost range
float u) // Upper bound of cost range

};
: Computer(al, c, m, io, t, n, 1, u) {}
// === end of class Desktop ===

class PC
public:
PC (float

float
float
float
float
char*
float
float

public Desktop {

al = 1.8, //
c = 2.3, //
m = 5.6, //
io = 9.2, //
t = 230.0, //

n = "PC", //
1 = 800.0, //
u = 14500.0) //

} //
Desktop (al, c, m, io, t, n, 1, u)

=== end of class PC ===

// Personal Computer

Arithmetic/logic
Control
Memory
Input/output
Cycle time in nanoseconds
Name
Lower bound of cost range
Upper bound of cost range

{}

class WS
public:
WS (

public Desktop {

float
float
float
float
float
char*
float
float

al =
c =
m =
io =
t =

n =
1 =

1
1
2,
5,
90.0,
"WS",
4500.0,

,3,
7,

■ 1,
8,

} //

u = 78900.0]
Desktop (al, c,

=== end of class
m,

//
//
//
//
//
//
//
//
io

// Workstation

Arithmetic/logic
Control
Memory
Input/output
Cycle time in nanoseconds
Name
Lower bound of cost range
Upper bound of cost range

, t, n, 1, u) {}
WS ===

class Mainframe
public:
Mainframe (

float c
float m
float io
float t
char* n
float 1
float u

}
//

Computer(

end of class

public Computer { // Mainframe

float al = 1.2, // Arithmetic/logic
1.5, // Control
3.6, // Memory
3.2, // Input/output
50.0, // Cycle time in nanoseconds
"$$$", // Name
310000.0, // Lower bound of cost range
20000000.0) // Upper bound of cost range
al, c m, io, n, 1, u) {}

Mainframe ===

CMU/SEI-95-TR-002 37

class Testlt {
// Computes the response time in nanoseconds of running

benchmark b
// on computer c, where
// rt = response time,
// ct = clock cycle time,
// ic = instruction count, and
// cpi = clock cycles per instruction.
// The response time in nanoseconds is computed as
// rt = ic * cpi * ct .
float rt;
void results (Computer c, BenchMark b);

public:
Testlt (Computer c, BenchMark b);

};

int Testlt :: TestIT(Computer c, BenchMark b)
{
float al_rt, c_rt, m_rt, io_rt;
al_rt = b.alP * b.ic * c.alcpi * c.ct;
c_rt = b.cP * b.ic * c.ccpi * c.ct;
m_rt = b.mP * b.ic * c.mcpi * c.ct;
io_rt = b.ioP * b.ic * c.iocpi * c.ct;
rt = al_rt + c_rt + m_rt + io_rt;
results (c, b);

}

void Testlt :: results (Computer c, BenchMark b)
{
// cout statements denoting computer and benchmark
b.report();
c.report();

} // MCC =1
// === End of Class Testlt ===
// ===== End of Example =====

38 CMU/SEI-95-TR-002

7.2.1 Computation of Measures for C++ Example

The computer performance example in Figure 7-2 has two base classes, BenchMark and
Computer.

BenchMark

n, alP, mP, cP,
ioP, ic

report
init_error
okay
BenchMark(—)

JobA

alP, mP, cP,
ioP, ic

okay
init error

JobB

alP, mP, cP,
ioP, ic

okay
init error

JobC

alP, mP, cP,
ioP, ic

okay
init error

Computer

alcpi, ccpi, mcpi,
iocpi, ct, name,
costU, costL

report

Computer(—)

MainFrame

al, c, m, io, t,
n, 1, u

Computer(-)

WS

al, c, m, io, t,
n, 1, u

DeskTop(-)

DeskTop

al, c, m, io, t,
n, 1, u

Computer(-)

PC

al, c, m, io, t,
n, 1, u

DeskTop(-)

Figure 7-2: C++ Example Class Diagram

CMU/SEI-95-TR-002 39

For the taxon method, McCabe's cyclomatic complexity (MCC) is calculated for each
method in each of the classes. The base class BenchMark has four methods, which are
inherited by three objects formed from this base class; so we need only consider these
four methods for the base class BenchMark. Similarly, base class Computer has two
methods, which are inherited by two objects formed from this base class; so we need
only consider these two methods for the base class Computer. Testlt is a program that
accesses the two classes to instantiate the objects. The results of the calculation of MCC
are summarized below.

Class

BenchMark

Computer

Method Measure

report MCC = 1

init_error MCC = 1

okay MCC = 2

Benchmark MCC = 1

report MCC = 1

Computer MCC = 2

For the taxon class, the measure Size2 proposed by Li and Henry [Li 93] is calculated
for each class in the software system. Recall that Size2 is the total number of attributes
and methods for each class. The results of the calculation of Size2 are summarized
below.

Class

BenchMark

Computer

Measure

Size2 = 6+4 = 10

Size2 = 8+2 = 10

For the taxon inheritance, the measure is DIT (Depth of Inheritance Tree) proposed by
Chidamber and Kemerer [Chidamber 94]. The results of the calculation of DIT are
summarized below.

Class Measure

BenchMark DIT=1

Computer DIT = 2

40 CMU/SEI-95-TR-002

For the taxon coupling and uses, the measure is CCM (total Count of the number of
accesses to other Classes, accesses by other classes and the nuMber of cooperating
classes) proposed by Chen [Chen 93]. The results of the calculation of CCM are
summarized below.

JobA, JobB, & JobC access BenchMark count is 3

DeskTop and Mainframe access Computer count is 2

PC and WS access DeskTop count is 2

Computer and BenchMark are accessed by Testlt count is 2

CCM = 9

For the taxon system, the measure is SCI (the total number of edges in the hierarchy
graph for the system) proposed by Abreu and Carapuca [Abreu 94]. From Figure 7-2,
the total number of edges in the hierarchy graph for the system is seven. (Simply count
the arrow heads.)

SCI = 7

CMU/SEI-95-TR-002 41

7.3. Ada95 Example (Car Dashboard Instrumentation)

This example is based on the sample application program provided by the New York
University GNU Ada Translator system (GNAT) [Schonberg 94]. The Ada95
implementation code for the methods is omitted, some documentation has been added,
and the with and use statements are not included. This example is not intended to be
executable, but to emphasize the computation of the various measures that apply to an
object-oriented software product.

This example, the hierarchy of which is portrayed in Figure 7-3, is the design and top-
level implementation of a software artifact to simulate some of the instruments on an
automobile dashboard. The design consists of a base class, Instrument; and derived
classes, Speedometer, Gauge, and Clock.

I
Graf_Gauge

Clock

/ \

Chronometer Accu_Clock

Figure 7-3: Ada Example Class Hierarchy Chart

A partially coded implementation of the Car Dashboard Instrumentation example
follows:

42 CMU/SEI-95-TR-002

package Instruments is

Root Type

type Instrument is tagged record
Name : String (1..14) := "

end record;
procedure Set_Name (I: in out Instrument; S: String)
procedure Display_Value (I: Instrument);

Speedometer

subtype Speed is Integer range 0..85; --mph
type Speedometer is new Instrument with record

Value : Speed;
end record;
procedure Display_Value (S : Speedometer);

Gauges

subtype Percent is Integer range 0..100;
type Gauge is new Instrument with record;

Value : Percent;
end record;
procedure Display_Value (G: Gauge);

type Graf_Gauge is new Gauge with record
Size : Integer := 20;
Full : Character := '*';
Empty: Character := ' . ' ;

end record;
procedure Display_Value (G: Graf_Gauge);

Clocks

subtype Sixty is Integer range 0..59;
subtype Twenty_Four is Integer range 0. .23;
type Clock is new Instrument with record

Seconds
Minutes
Hours

end record;

Sixty := 0;
Sixty := 0;
Twenty_Four := 0;

CMU/SEI-95-TR-002 43

procedure Display_Value (C: Clock):
procedure Init (C: in out Clock;

H: Twenty_Four := 0;
M, S: Sixty := 0) ;

procedure Increment (C:in out Clock; Inc:Integer :=1);

type Chronometer is new Clock with null record;
procedure Display_Value (C: Chronometer);

subtype Thousand is Integer range 0..999;
type Accu_Clock is new Clock with record

MSecs : Thousand = 0;
end record;
procedure Display_Value (C: Acc_Clock);

end Instruments; -- End Class Instruments --

Program to test the Class Instrument --

procedure Test_Instruments is
type ACC is access all Instrument'Class;
package DashBoard is new Gen_List(Ace); use DashBoard;

procedure Print_DashBoard (L: List) is
LI : List := L;
A : Ace;

begin
while LI /= Nil loop
A := Element(LI);
Display_Value(A.all);
LI := Tail(LI);
end loop;

New_Line;
end Print_DashBoard;

44 CMU/SEI-95-TR-002

»> Objects <«
Speed : aliased Speedometer;
Fuel : aliased Gauge;
Oil, Water : aliased Graf_Gauge;

Time
Chrono
DB
begin

Set_Name
Set_Name
Set_Name
Set_Name
Set_Name
Set_Name
Speed.Value
Fuel.Value
Water.Value
Oil.Value
Init (Time,

aliased Clock;
aliased Chronometer;
List := Nil;

(Speed,
(Fuel ,
(Water,
(Oil ,
(Time,
(Chrono,

45
60
80
30

12, 15

"Current speed");
"Fuel tank");
"Water ");
"Oil ");
Current time");
"Chronometer");
--mph

--%

00); --hrs, mins, sec
Init (Chrono, 22, 12, 56);
DB := Append (Speed'Access, Append (Fuel'Access,

Append (Water'Access, Append (Oil'Access,
Append (Time'Access, Chrono'Access)))));

Print_DashBoard (DB);
end Test_Instruments;

CMU/SEI-95-TR-002 45

7.3.1 Computation of Measures for Ada95 Example

This example, whose hierarchy chart is portrayed in Figure 7-4, has base class
Instrument having three derived classes. The program Test_Instruments instantiates
the objects to simulate the functions of the instrument panel.

r

Instrument

Name
Tag

Set_Name

DisplayJValue

Clock
Gauge

Speedometer
Tag,H,M,S

Value
Value

Display_Value

Init

Increment

Display_value
Display_Value

\ r \

Graf_Gauge

'

v

Chronometer Accu_Clock

Size, Full, Empty MSecs

Display_Value Display_Value Display_Value

Figure 7-4: Ada95 E: sample Class Diaj jram

46 CMU/SEI-95 -TR-0()2

For the taxon method, McCabe's cyclomatic complexity (MCC) is calculated for each
method in each of the classes. In Figure 7-4, we observe that the base class Instrument
has two methods and the derived classes, Speedometer and Gauge, inherit these
methods; so we need only consider the two methods. The derived class Gauge has a
child class Graf_Gauge, which adds no new methods. Derived class Clock inherits
Display_Value and adds two new methods, Init and Increment. Testjnstrument is a
program which accesses the base classes to instantiate the objects. The results of the
calculation of MCC are summarized below.

Class

Instrument

Clock

Method

Set_Name

DisplayJValue

Init

Increment

Measure

MCC = 1

MCC = 1

MCC = 1

MCC = 1

For the taxon class, the measure Size2 proposed by Li and Henry [Li 93] is calculated
for each class in the software system. The results of the calculation are summarized
below.

Class

Instrument

Speedometer

Gauge

Clock

Graf_Gauge

Chronometer

Accu Clock

Measure

Size2 = 2+2 = 4

Size2 = 1+1 = 2

Size2 = 1+1 = 2

Size2 = 3+3 = 6

Size2 = 3+1 = 4

Size2 = 0+1 = 1

Size2 = 1+1 = 2

For the taxon inheritance, the measure is DIT (Depth of Inheritance Tree) proposed by
Chidamber and Kemerer [Chidamber 94]. The results of the calculation are
summarized below.

Class Measure

Instrument DIT = 2

Gauge DIT=1

Clock DIT=1

CMU/SEI-95-TR-002 47

For the taxon coupling and uses, the measure is CCM (total Count of the number of
accesses to other Classes, accesses by other classes and the nuMber of cooperating
classes) proposed by Chen [Chen 93]. The results of the calculation of CCM are
summarized below.

Speedometer, Gauge and Clock access Instrument count is 3

Graf_Gauge accesses Gauge count is 1

Chronometer and Accu_Clock access Clock count is 2

CCM = 6

For the taxon system, the measure is SCI (total number of edges in the hierarchy graph
for the system), proposed by Abreu and Carapuga [Abreu 94]. From Figure 7-4, the total
number of edges in the hierarchy graph for the system is six. (Simply count the arrow
heads.)

SCI = 6

48 CMU/SEI-95-TR-002

8. Conclusions and Recommendations

The object-oriented paradigm is a model that represents the complexity inherent in
large software systems. It measures complexity's many features (discussed by many of
the authors in our bibliography) to enable the software engineer to monitor the software
development process. It measures even those features that are in direct conflict with
each other, such as execution time and memory space, efficiency and understandability,
and coupling and cohesion.

There is, however, currently no single measure that captures all the features of an
object-oriented software product. Based on this fact, a better approach to measuring
object-oriented software products is to isolate the features of the product that are of
concern to us and develop a suite of measures that measures these features. The two
examples in Section 7 show that a suite of measures is easily calculated from the design
documents. Most measures of methods also require actual computer code, or at least
pseudocode. McCabe's measure, for example, was calculable from the incomplete code
in the example, but Halstead's effort measure would have required executable code for
its calculation.

The suite of measures we have used also has the property of consistency. For these
measures, lower values were better than higher values. However, a few of these
measures were 'weak' for the purpose used. McCabe's cyclomatic complexity measure
was chosen as a member of the suite because it was calculatable from the incomplete
code; however, the measure produced only values of one and two (indicating a lack of
granularity). McCabe's measure is acceptable for identifying logic structures in
programs but poor for measuring program size. Some authors have suggested
augmenting the suite to include a size measure, a complexity measure, and an
input/output count measure for the methods of a class, as opposed to collecting a single
measure.

There are several key concepts captured in this report. First, once an analysis and
design paradigm is chosen and the software products specified, a measurement plan
should be put into action. The plan should identify

• the features of the product that require measurement,

• a process for selecting the appropriate measures,

• the data to be gathered, and

• consistent rules for calculating each measure.

Second, the object-oriented paradigm is continually evolving; the need for new measures
to represent these added features is still there.

CMU/SEI-95-TR-002 49

50 CMU/SEI-95-TR-002

Acknowledgments

The authors would like to acknowledge Jorge Diaz-Herrera, Gary Ford, Linda Ibrahim,
and Carol Sledge at the SEI and Gongzhu Hu at Central Michigan University for their
valuable reviews of this paper; Linda Northrop for her advice on object-oriented
methodologies; and Rachel Haas for editorial assistance.

CMU/SEI-95-TR-002 51

52 CMU/SEI-95-TR-002

References

[Abreu 94]

[Albrecht 79]

[Banker 91]

[Booch 94]

[Carleton 92]

[Chen 93]

[Chidamber 94]

[Coppick 92]

[DeMarco 82]

[Ford 93]

Abreu, Fernando B. & Carapuca, Rogerio. "Candidate Metrics for
Object-Oriented Software within a Taxonomy Framework."
Journal of Systems Soßware 26, (1994): 87-96.

Albrecht, A J. "Measuring application development productivity,"
pp. 83-92. Proceedings: IBM Applications Development Joint
SHARE/GUIDE Symposium. 1979.

Banker, Rajiv D.; Kauffman, Robert J.; & Kumar, Rachina. "An
Empirical Test of Object-based Output Measurement Metrics in
a CASE Environment." Journal of Management Information
Systems 8, 3 (Winter 1991): 127-150.

Booch, Grady. Object-Oriented Analysis and Design, Second
Edition. Redwood City, Calif.: Benjamin/Cummings, 1994.
ISBN 0-8053-5340-2.

Carleton, Anita D.; Park, Robert E.; Goethert, Wolfhart B; et al.
Software Measurement for DoD Systems: Recommendations for
Initial Core Measures (CMU/SEI-92-TR-19, ADA258304).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1992.

Chen, J-Y. & Lum, J-F. "A New Metric for Object-Oriented
Design." Information of Software Technology 35, 4 (April 1993):
232-240.

Chidamber, Shyam & Kemerer, Chris F. "A Metrics Suite for
Object-Oriented Design." IEEE Transactions on Software
Engineering 20, 6 (June 1994): 476-493.

Coppick, Chris J. & Cheatham, Thomas J. "Software Metrics for
Object-Oriented Systems," pp. 317-322. Proceedings: ACM CSC
'92 Conference. Kansas City, Missouri, March 3-5, 1992. New
York, New York: ACM Press, 1992.

DeMarco, Tom. Controlling Software Projects Management,
Measurement & Estimation. Englewood Cliffs, NJ: Prentice-Hall.
1982.

Ford, Gary. Lecture Notes on Engineering Measurement for
Software Engineers (CMU/SEI-93-EM-9, ADA266959).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1993.

CMU/SEI-95-TR-002 53

[Halstead 77]

[IEEE 94]

[Johnsonbaugh 95]

[Lee 93]

[Li 93]

[McCabe 76]

[Moreau 90a]

[Moreau 90b]

[Schonberg 94]

[Sharble 93]

[Tegarden 92]

Halstead, M. H. Elements of Software Science. North-Holland,
NY: Elsevier Publishing, 1977.

IEEE Computer Society. "Metrics in Software." Computer 27, 9
(September 1994): 13-79.

Johnsonbaugh, Richard & Kalin, Martin. Object-Oriented
Programming in C++. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Lee, Yen-Sung; Liang, Bin-Shiang; & Wang, Feng-Jian. "Some
Complexity Metrics for Object-Oriented Programs Based on
Information Flow," pp. 302-310. Proceedings: CompEuro. Paris-
Ivry, France, May 24-27, 1993. Los Alamitos, California: IEEE
Computer Society Press, 1993.

Li, Wei & Henry, Salley. "Maintenance Metrics for the Object
Oriented Paradigm," pp. 52-60. Proceedings: First International
Soßware Metrics Symposium. Baltimore, Maryland, May 21-22,
1993. Los Alamitos, California: IEEE Computer Society Press,
1993.

McCabe, T.J. "A Complexity Measure." IEEE Transactions on
Software Engineering 2, 4 (April 1976): 308-320.

Moreau, Dennis R. & Dominick, Wayne D. "A Programming
Environment Evaluation Methodology for Object-Oriented
Systems: Part I - The Methodology." Journal of Object-Oriented
Programming 3, 1 (May/June 1990): 38-52.

Moreau, Dennis R. & Dominick, Wayne D. "A Programming
Environment Evaluation Methodology for Object-Oriented
Systems: Part II - Test Case Application." Journal of Object-
Oriented Programming, 3, 3 (September/October 1990): 23-32.

Schonberg, E. '& Banner, B. "The GNAT Project: A GNU-Ada9X
Compiler," pp. 48-57. Proceedings: Tri-Ada 94. Baltimore,
Maryland, November 1994. New York, New York: ACM Press,
1994.

Sharble, Robert C. & Cohen, Samuel S. "The Object-Oriented
Brewery: A Comparison of Two Object-Oriented Development
Methods." SIGSOFT Software Engineering Notes 18, 4 (April
1993): 60-73.

Tegarden, David P.; Sheetz, Steven D.; & Monarchi, D.E.
"Effectiveness of Traditional Metrics for Object-Oriented
Systems," pp. 359-368. Proceedings 25th Hawaii International
Conference on System Sciences 4. Kauai, Hawaii, January 7-10,
1992. Los Alamitos, California: IEEE Computer Society Press,
January 1992.

54 CMU/SEI-95-TR-002

[Tse 94]

[Weyuker 88]

[Williams 93]

Tse, T. H. "Comparative Review of Object-Oriented
Programming Texts." Computing Reviews 35, 4 (April 1994):
187-190.

Weyuker, Elaine. "Evaluating Software Complexity Measures."
IEEE Transactions on Software Engineering 14, 9 (September
1988): 1357-1365.

Williams, John D. "Metrics for Object Oriented Projects," pp. 13-
18. Proceedings: Object Expo Euro Conference. London, U.K.,
July 12-16,1993. New York, New York: ACM SIGS Publications,
1993.

CMU/SEI-95-TR-002 55

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OFTHIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
3. DISTRIBUTION/AVAILABILrrY OF REPORT

Approved for Public Release
Distribution Unlimited

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-95-TR-002

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-95-002

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANTZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

8a. NAME OFFUNDrNG/SPONSORTNG
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT rDENTTFICATION NUMBER

F19628-95-C0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

Object-Oriented Software Measures
12. PERSONAL AUTHOR(S)
Clark Archer and Michael Stinson

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

April 1995
IS. PAGE COUNT

55
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

annotated bibliography taxonomy
measures
object-oriented

FIELD GROUP SUB. GR.

19. ABSTRACT (continue on reverse if necessaiy and identify by block number)

This paper provides an overview of the merging of a paradigm and a process, the object-oriented
paradigm and the software product measurement process. A taxonomy of object-oriented software
measures is created, and existing object-oriented software measures are enumerated, evaluated,
and placed in taxa. This report includes an extensive bibliography of the current object-oriented mea-
sures that apply to the design and implementation phases of a software project. Examples of com-
putation of representative measures are included.

(please turn over)

20. DISTRIBUTION/AVAILABILrrY OF ABSTRACT

UNCLASSIFIEDAJNLIMITED H SAMEASRPTQ DTIC USERS (

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/ENS (SEI)

DD FORM 1473,83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OFTHIS PAGE

ABSTRACT — continued from page one, block 19

